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Outline

• Background

• Precursor to ERS transition

• New measurements of vθ(r), 
inversion to provide local values

• Er measurements

• Shearing rates and transition 
threshold

• Comparison to Neoclassical 
predictions

• MHD bursts associated with 
precursor



Transport Barrier Forms in Plasma Core,
 Near Minimum in q Profile

TFTR

• Both particle and energy confinement 
improve inside shear reversal region

• Shear reversal not sufficient for transition
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• Model of E×B shear stabilization is 
fundamental to our present understanding
of transport barriers at the plasma edge 
and in the core.

• Transport barrier formation linked to
Er and a reduction in turbulence due to 
E×B shear.

• At the H-mode edge, Er associated with 
impurity vθ at time of transition.

• Recent measurements on TFTR point to 
the importance of vθ in core barrier 
formation in reversed shear plasmas.



The Physics Of Bifurcations Is Central To
Understanding TFTR ERS plasmas

TFTR
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• Before transition, ne,Te, Ti, Vφ, nz 
profiles are indistinguishable

• Key physics must be nonlinear



Bifurcation In Poloidal Velocity 
Precedes ERS Transition
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• Local carbon pressure give earliest indication of the 
bifurcation in transport, change in ne(0) ≈50 ms later.

• 50-100 ms before transition, a local change in carbon 
poloidal rotation is observed for ERS discharge.

BT = 4.6 T



Shearing Rate:

    
ωE×B =

RBθ( )2
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For the outer midplane,

    
ωE×B = Er
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Radial Force Balance Equation:

  
Er = ∇p

eZn
+ vφ Bθ − vθ Bφ

• Er can be affected through each of 
these terms.

• Evaluation of Er has typically been to 
sum terms on right side of equation.

• Core vθ usually evaluated from 
neoclassical theory



TFTR Poloidal Rotation Diagnostic
Addresses  Problems of Core vθ Measurements

• High Throughput
- throughput >  2000  × CHERS system
- Linefits to 1-2 % of pixel width
- Uses intrinsic and CX emission

• High Spatial Resolution
- 29 spatial channels (∆R < 3.5 cm) 

• Inversion
- Recovers local velocity 
- Bell, Rev. Sci. Instrum. 68,1273 (1997)

• Opposing Views
- Removes systematic effects
- Cancels view dependent effects of 
       Charge Exchange Emission

• Strictly Vertical Orientation
- No toroidal velocity component
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• Poloidal velocity peaks then relaxes with several 
oscillations 

• Transient excursion in poloidal velocity appears 
on 1 or 2 sightlines only 

• Velocity is zero after pellet injection
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• Inversion deepens and narrows apparent shear region
• "Artifact" due to misalignment of shear layer from sightlines
• Shear layer narrower than sightline spacing  (3.5 cm)
• Chordal data limits (∆vθ)(∆r) ≈ 220 km/s - cm
• Location of velocity shear layer, between pressure 

gradients and low magnetic shear:  Reynold's Stress?

A Narrow Large Poloidal Velocity Shear Layer 
Located  Just Inside qmin
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vθ , Bθ

AXIS

vφ

BφIp

Schematic of Poloidal Rotation in 
TFTR Reverse Shear plasmas

• Carbon ions generally rotating in the 
ion diamagnetic direction 

• Transiently, carbon poloidal flow reverses
direction in narrow radial region 

• Deuterium ion flow not measured
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pitch angle

Transient Er 
contribution

Large Er Transient Appears
on MSE Measurements

• Er transient easily separated from slowly 
varying pitch angle  

• Adjacent MSE channels detect little or no 
contribution from transient.

Adjacent 
Channels
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All Terms In Radial Force Balance
Equation Measured

• Er measurements agree,

• Er transient = poloidal flow 
(averaged over ≈ 3.5 cm) 

Er = ∇p/(eZn)+vφBθ-vθBφ



"Dithering" ERS Correlates Shearing Rate 
With Core Barrier Formation
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• Peakedness factor show times of improved 
confinement 

• Marginal conditions for transition indicate 
nominal transition threshold value for
shearing rate 

• Precursor spike many times larger than 
threshold for transition

Critical 
Shearing
Rate



BT Variation of Transition Threshold 
Needs Reevaluation
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• Measured threshold ωE×B for dithering
 discharge at 3.4 T near γ max in BT scan

• With large Er transients, ωE×B >>  γ max

• Previous threshold for transition was 
evaluated with neoclassical vθ
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•  Neoclassical vθ is near zero prior to ERS transition

•  Measured vθ is zero after pellet injection, then increases

•  After transition both neoclassical and measured vθ 
decrease with increasing pressure

• Nearly constant difference is maintained during ERS;
    larger difference at smaller radii

Carbon vθ, Er

 Offset from Neoclassical Values



MHD Bursts Occur During Relaxation
of Er/vθ Excursion
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• ECE measures fluctuation at shear layer  
• Timing of MHD Burst: Drop in Er of inner 

channel with increase in outer channel  
 => during motion of shear layer? 
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• Low frequency ( ≈50 kHz) mode observed by 
ECE to occur at the poloidal velocity shear layer

• Low frequency mode has toroidal mode number n=1

• Best fit to high frequency mode (≈ 250 kHz) is n=0

• Low frequency mode usually occurs first

• High frequency mode sometimes appears alone

MHD Bursts Occur in Two Frequency Ranges



Summary
• New local vθ measurements in core plasma

• Er, vθ precursor to ERS transition

• Important to measure all quantities in radial force
 balance equation

• High spatial resolution important, local
measurement could "miss" narrow shear region

• For precursor ωE×B >> critical shearing rate

• Measured carbon vθ differs from neoclassical vθ

• MHD bursts near shear layer
-  50 kHz,  n=1
- 250 kHz, n=0

CHALLENGES/ PUZZLES:

• What is the cause of the transient poloidal
    flow?  How is the poloidal viscosity overcome?

• What is the source of the discrepancy with
    neoclassical carbon vθ?

• What are the MHD modes during vθ excursion?
    Clue to understanding dynamics of precursor.


